Robustness of Classifiers to Uniform

ℓ_p and Gaussian Noise

Jean-Yves Franceschi¹, Alhussein Fawzi², Omar Fawzi¹

¹Ecole Normale Supérieure de Lyon – LIP, UMR 5668 ²UCLA Vision Lab (now at DeepMind)

jean-yves.franceschi@ens-lyon.fr, hussein.fawzi@gmail.com, omar.fawzi@ens-lyon.fr

1. Adversarial and Random Perturbations

- Relate robustnesses to adversarial and random noise.
- ullet Classifier $f:\mathbb{R}^d \to \mathbb{R}^L$, $g= \operatorname{argmax} f$.
- Adversarial perturbation w.r.t. norm ℓ_p :

$$\boldsymbol{r}_p^*(\boldsymbol{x}) = \operatorname{argmin} \left\{ \|\boldsymbol{r}\|_p \text{ s.t. } g(\boldsymbol{x} + \boldsymbol{r}) \neq g(\boldsymbol{x}) \right\}.$$

red panda (unperturbed)

 $p = \infty$

p = 1

Figure 1: Adversarial perturbations of an image for VGG-19 with different p-norms.

ullet Robustness to random perturbation, for $oldsymbol{v} \sim
u$: $r_{\nu,\varepsilon}(\boldsymbol{x}) = \min_{\alpha} \left\{ |\alpha| \text{ s.t. } \mathbb{P}_{\boldsymbol{v}} \left\{ g(\boldsymbol{x} + \alpha \boldsymbol{v}) \neq g(\boldsymbol{x}) \right\} \geq \varepsilon \right\}.$

• Goal: Derive lower and upper bounds as well as an estimate on $\frac{r_{
u,\epsilon}(oldsymbol{x})}{\|oldsymbol{r}_p^*(oldsymbol{x})\|_p}.$

2. Bounds on Linear Classifiers

$$f(\boldsymbol{x}) = \boldsymbol{w}^T \boldsymbol{x} + \mathbf{b}$$

2.1 Uniformly Distributed Noise in the ℓ_p Ball

Theorem 1. Let $p, p' \in [1, \infty]$ such that $\frac{1}{p} + \frac{1}{p'} = 1$. Then, for ε small enough:

$$\zeta_1(\varepsilon)d^{1/p}\frac{\|\boldsymbol{w}\|_{p'}}{\|\boldsymbol{w}\|_2} \leq \frac{r_{p,\varepsilon}(\boldsymbol{x})}{\|\boldsymbol{r}_p^*(\boldsymbol{x})\|_p} \leq \zeta_2(\varepsilon)d^{1/p}\frac{\|\boldsymbol{w}\|_{p'}}{\|\boldsymbol{w}\|_2}.$$

- Depends on the choice of orthonormal basis if $p \neq 2$.
- \bullet For a typical w, each bound if of the form:

$$C(\varepsilon, p)\sqrt{d}$$
.

Proof sketch of simple special case. Lower bound for $p = \infty$:

- $ullet oldsymbol{r}_p^*(oldsymbol{x}) = rac{|f(oldsymbol{x})|}{\|oldsymbol{w}\|_1} \ \ ext{ and } \ \mathbb{P}_{oldsymbol{v}}\left\{g(oldsymbol{x}+lphaoldsymbol{v})
 eq g(oldsymbol{x})
 ight\} = egin{array}{c} \{g(oldsymbol{x}+lphaoldsymbol{v})
 eq g(oldsymbol{x})\} \end{array}$ $\mathbb{P}_{\boldsymbol{v}}\left\{|\alpha|\sum_{i=1}^{d}w_{i}v_{i}\geq \|\boldsymbol{w}\|_{1}|f(\boldsymbol{x})|\right\}.$
- \bullet $(v_i)_i$ are i.i.d. and uniform over [-1,1]: can apply Hoeffding and derive a lower bound.

Ideas for the general case.

- Lower bound: use Markov's inequality and estimates of $\mathbb{E}_{oldsymbol{v}}\left|\left(oldsymbol{w}^Toldsymbol{v}
 ight)^k
 ight|$
- Upper bound: use Paley-Zygmund's inequality and the previous estimates.

2.2 Gaussian Noise

Theorem 2. Let Σ be a $d \times d$ positive semidefinite matrix. Then, for ε small enough:

$$\zeta_1'(\varepsilon) \frac{\|\boldsymbol{w}\|_2}{\|\sqrt{\Sigma}\boldsymbol{w}\|_2} \leq \frac{r_{\Sigma,\varepsilon}(\boldsymbol{x})}{\|\boldsymbol{r}_2^*(\boldsymbol{x})\|_2} \leq \zeta_2'(\varepsilon) \frac{\|\boldsymbol{w}\|_2}{\|\sqrt{\Sigma}\boldsymbol{w}\|_2}.$$

ullet For a typical w, each bound if of the form:

$$C'(\varepsilon, p)\sqrt{d}$$
.

 \bullet Σ may depend on \boldsymbol{x} .

3. Extension to Locally Approximately Flat (LAF) Classifiers

- A classifier is LAF at some point x if the decision boundary can be approached by a plane in a given ball centered at x.
- In this setting, the results on linear classifiers are still valid, up to some constants in the bounds.
- ullet The normal vector $oldsymbol{w}$ may be naturally replaced by the gradient of f at at the closest point x^* on the decision boundary.
- Experiments indicate that the LAF assumption is reasonable for state-of-the-art deep neural networks.

Figure 2: Illustration of the LAF model.

Figure 3: Experiments on a deep neural network (VGG-19, ImageNet dataset).

4. Applications: Robustness to Quantization

- Image quantization (discretization of the range of pixel values): $\boldsymbol{x} \mapsto Q(\boldsymbol{x})$.
- ullet Can assume $Q\left(oldsymbol{x}
 ight) \sim \mathcal{U}\left(\mathcal{B}_{\infty}\left(oldsymbol{x}, rac{\Delta}{2}
 ight)
 ight)$.
- \triangle : quantization step size.
- $\bullet L_q = \frac{255}{\Lambda}$: number of quantization levels corresponding to Δ .
- Our results allow us to estimate the level of quantization needed so that a quantized image is still classified correctly.

pug Original

mail 1 bit

bulldog 2 bits

pug 3 bits

Figure 4: Illustration of the effects of quantization.

Figure 5: Experiments on quantization (VGG-19, ImageNet dataset).

References

Barthe, F., Guédon, O., Mendelson, S., and Naor, A. (2005). A probabilistic approach to the geometry of the ℓ_p^n -ball. The Annals of Probability, 33(2).

Fawzi, A., Moosavi-Dezfooli, S., and Frossard, P. (2016). Robustness of classifiers: from adversarial to random noise. In Advances in Neural Information Processing Systems (NIPS) 29.

Moosavi-Dezfooli, S.-M., Fawzi, A., and Frossard, P. (2016). Deepfool: a simple and accurate method to fool deep neural networks. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).