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1. Adversarial and Random Perturbations

•Goal: Relate robustnesses to adversarial
and random noise.
•Classifier f : Rd→ RL, g = argmax f .
•Adversarial perturbation w.r.t. norm `p:

r∗p(x) = argmin
r
{‖r‖p s.t. g(x + r) 6= g(x)} .
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Figure 1: Adversarial perturbations of an image
for VGG-19 with different p-norms.

•Robustness to random perturbation, for v ∼ ν:

rν,ε(x) = min
α
{|α| s.t. Pv {g(x + αv) 6= g(x)} ≥ ε} .

•Goal: Derive lower and upper bounds as well

as an estimate on
rν,ε(x)

‖r∗p(x)‖p
.

2. Bounds on Linear Classifiers

f (x) = wTx + b

2.1 Uniformly Distributed Noise in the
`p Ball
Theorem 1. Let p, p′ ∈ [1,∞] such that 1

p + 1
p′ = 1.

Then, for ε small enough:

ζ1(ε)d
1/p‖w‖p′
‖w‖2

≤ rp,ε(x)

‖r∗p(x)‖p
≤ ζ2(ε)d

1/p‖w‖p′
‖w‖2

.

•Depends on the choice of orthonormal basis if
p 6= 2.
•For a typical w, each bound if of the form:

C(ε, p)
√
d.

Proof sketch of simple special case. Lower
bound for p =∞:
• r∗p(x) = |f (x)|

‖w‖1 and Pv {g(x + αv) 6= g(x)} =

Pv

{
|α|
∑d

i=1wivi ≥ ‖w‖1 |f (x)|
}
.

• (vi)i are i.i.d. and uniform over [−1, 1]: can apply
Hoeffding and derive a lower bound.

Ideas for the general case.
• Lower bound: use Markov’s inequality and esti-

mates of Ev

[(
wTv

)k].
•Upper bound: use Paley-Zygmund’s inequality

and the previous estimates.

2.2 Gaussian Noise
Theorem 2. Let Σ be a d× d positive semidefinite
matrix. Then, for ε small enough:

ζ ′1(ε)
‖w‖2

‖
√

Σw‖2

≤ rΣ,ε(x)

‖r∗2(x)‖2
≤ ζ ′2(ε)

‖w‖2

‖
√

Σw‖2

.

•For a typical w, each bound if of the form:

C ′(ε, p)
√
d.

•Σ may depend on x.

3. Extension to Locally Approximately Flat
(LAF) Classifiers

•A classifier is LAF at some point x if the deci-
sion boundary can be approached by a plane in
a given ball centered at x.
• In this setting, the results on linear classifiers

are still valid, up to some constants in the
bounds.
•The normal vector w may be naturally replaced

by the gradient of f at at the closest point x∗ on
the decision boundary.
•Experiments indicate that the LAF assumption

is reasonable for state-of-the-art deep neural
networks.

Figure 2: Illustration of the LAF model.

100 101

p

100

101

102

103

104

105

106

107

108

Empirical rp,ε(x)

Estimator

Lower bound

Upper bound

Figure 3: Experiments on a deep neural network
(VGG-19, ImageNet dataset).

4. Applications: Robustness to
Quantization

• Image quantization (discretization of the range
of pixel values): x 7→ Q (x).

•Can assume Q (x) ∼ U
(
B∞
(
x, ∆

2

))
.

•∆: quantization step size.

•Lq = 255
∆ : number of quantization levels corre-

sponding to ∆.

•Our results allow us to estimate the level of
quantization needed so that a quantized image
is still classified correctly.
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Figure 4: Illustration of the effects of quantization.
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Figure 5: Experiments on quantization (VGG-19,
ImageNet dataset).
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