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‘ 1. Adversarial and Random Perturbations |

e Goal: Relate robustnesses to adversarial
and random noise.

o Classifier f : R — R, g = argmax f.
e Adversarial perturbation w.r.t. norm /,:

T (T) = arginin {|r|], st glx+7r)#g(x)}.

red panda
(unperturbed)

Figure 1: Adversarial perturbations of an image
for VGG-19 with different p-norms.

e Robustness to random perturbation, for v ~ v:

rye(@) = mozn{]cv\ s.t. P, {g(x+ av) # g(x)} > ¢}.

e Goal: Derive lower and upper bounds as well
Ty e(2)

as an estimate on - .
|r5(x)],

2. Bounds on Linear Classifiers

flx)=w'z+ b

2.1 Uniformly Distributed Noise in the
¢, Ball

Theorem 1. Let p,p' € [1,00] such that  + - = 1.
Then, for ¢ small enough:

1/prHp’ /rpaé“(w) 1/prHp/
e el =

e Depends on the choice of orthonormal basis if

p # 2.

e For a typical w, each bound if of the form:

Cle, p)Vd.

Proof sketch of simple special case. Lower
bound for p = oo

eri(z) = L and P,{g(z +av) # g(x)} =

p ]l
d
Py { o Sy wivs > Jwll |f @)}

o (v;), arei.i.d. and uniform over|—1,1|: can apply
Hoeffding and derive a lower bound.

Ideas for the general case.
e Lower bound: use Markov’s inequality and esti-
mates of E,, {(w%)ﬂ.

e Upper bound: use Paley-Zygmund’s inequality
and the previous estimates.
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2.2 Gaussian Noise

Theorem 2. Let > be a d x d positive semidefinite
matrix. Then, for e small enough:

[wly _ roc@

[VEwlly ~ lIr5(@)]l2 IVEw|,

e For a typical w, each bound if of the form:

C'(e, p)Vd.

Gi(€) < G(e)

¢ ). may depend on x.

3. Extension to Locally Approximately Flat
(LAF) Classifiers

e A classifier is LAF at some point x if the deci-
sion boundary can be approached by a plane in
a given ball centered at «.

e In this setting, the results on linear classifiers
are still valid, up to some constants Iin the
bounds.

e The normal vector w may be naturally replaced
by the gradient of f at at the closest point x* on
the decision boundary.

e Experiments indicate that the LAF assumption
IS reasonable for state-of-the-art deep neural
networks.

’
s
s
4
s

’

.~ Diflerent classification from x

Figure 2: /llustration of the LAF model.
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Figure 3: Experiments on a deep neural network
(VG@G-19, ImageNet dataset).
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4. Applications: Robustness to
Quantization

e Image quantization (discretization of the range
of pixel values): x — Q (x).

e Can assume Q (z) ~ U (B (x,5)).

7 2
e A: quantization step size.

e L, = 22 number of quantization levels corre-

sponding to A.

e Our results allow us to estimate the level of
guantization needed so that a quantized image
s still classified correcily.

G

F . B ¥ ¥ &
mail bulldog pUg
1 bit 2 bits 3 bits

Figure 4: /llustration of the effects of quantization.
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Figure 5: Experiments on quantization (VGG-19,
ImageNet dataset).
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