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Motivation



Deep Learning

I Deep learning has driven many scientific breakthroughs since
2012, including in:
I computer vision (Krizhevsky et al., 2012);

I games (Silver et al., 2017);
I natural language processing (Brown et al., 2020).

I Many advances nowadays are achieved in an unsupervised
learning setting.

I This is necessary for the development of autonomous systems.
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AlphaGo
Source: Google DeepMind, via Wikimedia Commons. Public domain.
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Deep Learning

Source: Olah & Carter, Attention and Augmented Recurrent Neural Networks, Distill, 2016. CC-BY 2.0.
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Deep Learning

AlphaGo Elo

Master (sup.) 4858
Zero (unsup.) 5185

Few-shot language correction with GPT-3:
Input: The patient was died.
Output: The patient died.
Input: Janet broke Bill on the finger.
Output: Janet broke Bill’s finger.

I Deep learning has driven many scientific breakthroughs since
2012, including in:
I computer vision (Krizhevsky et al., 2012);
I games (Silver et al., 2017);
I natural language processing (Brown et al., 2020).
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Deep Learning

Source: Dllu, via Wikimedia Commons. CC BY-SA 4.0
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Representation Learning & Deep Generative Models

Image source: Geiger, Lenz, Stiller & Urtasun, KITTI Vision Benchmark Suite. CC BY-NC-SA 3.0.

Representation Learning

I Learning vectorial
embeddings of raw data.

I Applications:
I pre-training from

unlabeled samples;
I dimensionality reduction;
I disentanglement, etc.

Generative Modeling

I Learning to synthesize new
data points.

I Applications:
I data augmentation;
I image & text generation;
I procedural generation;
I sequence prediction, etc.
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Temporality

Source: NVIDIA Corporation, Wang, Liu & Zhu, vid2vid. CC BY-NC-SA 4.0.

Data Dynamics

I Data evolve naturally.
I Important for autonomous

systems in evolving
environments.

Training Dynamics

I Evolution of neural
networks during training.

I Important to understand
their behavior.
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Temporality

Source: The TensorFlow Authors, TensorFlow Documentation. Apache.

Data Dynamics

I Data evolve naturally.
I Important for autonomous

systems in evolving
environments.

Training Dynamics

I Evolution of neural
networks during training.

I Important to understand
their behavior.
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Neural Networks and Dynamical Systems

I Dynamical systems have been increasingly used in deep learning.
I Example with ODEs:

dxt
dt

= f(xt).

ODEs in Data Dynamics

Replacing RNNs by neural ODEs
(Chen et al., 2018):

RNNθ(yt)=yt+1

fθ(yt).=
dyt
dt

ODEs in Training Dynamics

From discrete-time to
continuous-time (with a loss Lθ):

θk − λ
∂Lθk
∂θk

=θk+1

−λ ∂Lθt
∂θt

.=
dθt
dt
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Contributions
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State-Space Predictive Models
for Spatiotemporal Data

Franceschi, Delasalles et al. “Stochastic Latent Residual Video Prediction”. ICML’20.

Donà, Franceschi et al. “PDE-Driven Spatiotemporal Disentanglement”. ICLR’21.



First Contribution: Video Prediction

Applications:

I Reinforcement Learning (Gregor et al., 2019).
I Robotics (Babaeizadeh et al., 2018).

Challenges

I Generation of realistic images.
I Long-term prediction.
I Account for uncertainty in the future.
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Stochastic Video Prediction Literature Taxonomy

Autoregressive Models

+ Easy to learn, powerful.
− Temporal model tied to

generation.
Ex.: Denton and Fergus (2018)

State-Space Models

+ Decoupled dynamics and
prediction, interpretable.

− Harder to train.
Ex.: Fraccaro et al. (2017)
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Our Approach

Model

y1 y2 y3

x1 x2 x3

z2 z3

Update Rule:{
zt+1 ∼ N

(
µθ(yt), σθ(yt)I

)
yt+1 = yt + fθ(yt, zt+1)

Key points:
I VAE state-space model.
I Residual updates.
I ODE inspiration.
I Generation at arbitrary

frame rates.
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Variational Autoencoders (VAEs)

I Generative model pθ(x | z) for x from a latent
z ∼ pθ(z) = pz:

pθ(x) =

∫
z
pθ(x | z)pθ(z) dz

I Intractable objective.
I Introducing qφ(z | x) to approximate pθ(z | x):

log pθ(x) ≥ Ez∼qφ(z | x)

[
log pθ(x | z)

]
−DKL

(
qφ(z | x)

∥∥ pz).
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VAEs as Autoencoders

Evidence Lower Bound (ELBO)

Optimized objective:

log pθ(x) ≥ Ez∼qφ(z | x)

[
log pθ(x | z)

]︸ ︷︷ ︸
reconstruction term

−DKL

(
qφ(z | x)

∥∥ pz)︸ ︷︷ ︸
KL term

.
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Prediction Model

x1 x2

x̂1 x̂2

z2

y1 y2

x̃1 x̃2

µz
φ, σ

z
φ

w
gθ gθ

hφ hφ

fθ

µθ, σθ z3

fθ

x̂3

y3

gθ

µ
y
φ
, σ

y
φ

q

p

q

x3

x̃3

hφ

µz
φ, σ

z
φ

q

µθ, σθ

p

Two operating modes:

I conditioning, via qφ;
I prediction / generation, via pθ.
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Generation Model

x1 x2

x̂1 x̂2

z2

y1 y2

x̃1 x̃2

µz
φ, σ

z
φ

w
gθ gθ

hφ hφ

fθ

µθ, σθ z3

fθ

x̂3

y3

gθ
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y
φ
, σ

y
φ

q

p

q

x3

x̃3

hφ

µz
φ, σ

z
φ

q

µθ, σθ

p

pθ:


y1 ∼ N (0, I) (initial condition)
zt+1 ∼ N

(
µθ(yt), σθ(yt)I

)
(random prediction)

yt+1 = yt + fθ(yt, zt+1) (latent state prediction)
xt ∼ N

(
gθ(yt), νI

)
(decoding)
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Inference /Conditioning Model

x1 x2

x̂1 x̂2

z2

y1 y2

x̃1 x̃2

µz
φ, σ

z
φ

w
gθ gθ

hφ hφ

fθ

µθ, σθ z3

fθ

x̂3

y3

gθ

µ
y
φ
, σ

y
φ

q

p

q

x3

x̃3

hφ

µz
φ, σ

z
φ

q

µθ, σθ

p

qφ(z2:T ,y1 | x1:T ) = qφ(y1 | x1:k)︸ ︷︷ ︸
Init. Cond.

T∏
t=2

qφ(zt | x1:t)︸ ︷︷ ︸
LSTM

→ Training consists in optimizing the corresponding ELBO.
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Content Variable w

x1 x2

x̂1 x̂2

z2

y1 y2

x̃1 x̃2
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z
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w
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hφ hφ
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y
φ
, σ

y
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q

p

q

x3

x̃3

hφ

µz
φ, σ

z
φ

q

µθ, σθ

p

I Store static information (e.g., background and object shapes).
I Outside ELBO (we consider pθ(x | w)).
I Computed from randomly sampled frames → temporal

invariance.
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Evaluation

x1 x2
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I Conditioning frames are used to infer dynamic variables and w.
I Prediction follows using the forward model.

Representation Learning and Deep Generative Modeling in Dynamical Systems – Jean-Yves Franceschi 15/45



Experimental Results: Moving MNIST

Models
Stochastic Deterministic

PSNR SSIM PSNR SSIM

SVG 14.50 0.7090 12.85 0.6185
Ours 16.93 0.7799 18.25 0.8300
Ours - GRU 15.80 0.7464 13.17 0.6237
Ours - MLP 16.55 0.7694 16.70 0.7876
Ours - w/o z — — 14.99 0.4757

SVG: Denton and Fergus (2018).
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Experimental Results: KTH, Human3.6M and BAIR

Metric Dataset SV2P SAVP SVG SVRNN Ours

FVD (↓)
KTH 636 374 377 — 222
H3.6M — — — 556 416
BAIR 965 152 255 — 163

LPIPS (↓)
KTH 0.2049 0.1120 0.0923 — 0.0736
H3.6M — — — 0.0557 0.0509
BAIR 0.0912 0.0634 0.0609 — 0.0574

PSNR (↑)
KTH 28.19 26.51 28.06 — 29.69
H3.6M — — — 24.46 25.30
BAIR 20.39 18.44 18.95 — 19.59

SV2P: Finn et al. (2016), SAVP: Babaeizadeh et al. (2018), SVRNN:
Minderer et al. (2019).
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Experimental Results: Samples
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Experimental Results: Generation at Various Frame Rates

Using the Euler approximation scheme:

dy

dt
= fθ

(
yt, zbtc+1

)
discr.
===⇒ yt+∆t = yt + ∆t · fθ

(
yt, zbtc+1

)
.
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Experimental Results: Latent Space Properties

Dynamics interpolation Content Swap
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Second Contribution: Spatiotemporal Disentanglement

I The separation of dynamic variables y and the content variable
w can be seen as spatiotemporal disentanglement.

I Spatiotemporal disentanglement provides interpretability and
can improve prediction performance.

Question

What is spatiotemporal disentanglement?

I Often complex and seldom analyzed, achieved through:
I KL-based separation in VAEs: ours, Hsieh et al. (2018) and

Yingzhen et al. (2018);
I adversarial losses: Villegas, Yang, et al. (2017) and Denton and

Birodkar (2017).

I We aim at grounding spatiotemporal disentanglement on
stronger foundations, with fewer implicit assumptions.
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Deterministic Setting

Hidden State u

Function of continuous
coordinates following a PDE:

u: (p, t) 7→ u(p, t).

Ex.: physical state of an action,
ocean temperature.

Observations x
Vectorial xt0 , . . . ,xt1 , spatial
measurements of u:

xt = ζ ◦ u(·, t).

Ex.: pixel values, punctual
surface temperatures.
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Spatiotemporal Disentanglement as Separation of Variables

Heat Equation

PDE:
∂u

∂t
= c2 ∂

2u

∂p2
.

Separation Hypothesis

u(p, t) = w(p) · y(t).

I Hence:

c2w
′′(p)

w(p)
=
y′(t)

y(t)
= cst.

ODE/PDE on w over p

w(p) = µ sin

(
nπ

L
p

)
.

ODE on y over t

y(t) = λ exp

(
−
(
cnπ

L

)2

t

)
.

I Spatiotemporal disentanglement is a separation of variables in a
PDE.

I We take inspiration from this technique to design a new model.
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Partially Observable Scenario

I Several functions to learn in the separation explicitly depend on
spatial coordinates p.

I In a partially observed setting (through ζ), p are unknown.
I We choose to implicitly learn p-dependent functions through:

I a representation w of p 7→ w(p);
I a decoding step learning how to combine temporal and spatial

solutions and the spatial measurement step.
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Model: Encoding

I w and yt0 are inferred from conditioning frames
xt0::τ =

(
xt0 , . . . ,xt0+τ

)
:

w = eSθ
(
xt0::τ

)
, yt0 = eTθ

(
xt0::τ

)
.

I A decoder gθ then outputs the predicted observations:

x̂t = gθ(w,yt).
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Model: Forecasting

I From the separation of variables, yt follows an ODE:

dyt
dt

= fθ(yt).

I Yields forecasting and alignment losses:

Lpred =
∑
t

‖x̂t − xt‖22, LAE =

∥∥∥∥gθ(w, eTθ (xt′::τ )
)
− xt′

∥∥∥∥2

2

I Similar structure as in our video prediction model.
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Model: Spatiotemporal Disentanglement

I From a strict w invariance constraint to a weaker one to take
into account variations of observable content:

∂eSθ (xt::τ )

∂t
= 0⇒ LSreg =

∥∥∥eSθ (xt0::τ

)
− eSθ

(
xt1−τ∆t::τ

)∥∥∥2

2

I Disentanglement loss:

LTreg =
∥∥yt0∥∥2

2
=
∥∥∥eTθ (xt0::τ

)∥∥∥2

2
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Experimental Results: Prediction & Disentanglement

Representation Learning and Deep Generative Modeling in Dynamical Systems – Jean-Yves Franceschi 28/45



Experimental Results: Prediction & Disentanglement

t=0 t=4 t=6 t=8

In
pu
t 

fr
am
es

Tr
ut
h

PK
nl

Ou
rs

Co
nt
en
t 

in
pu
t

Sw
ap

Ph
yD
Ne
t

MI
M

Representation Learning and Deep Generative Modeling in Dynamical Systems – Jean-Yves Franceschi 28/45



State-Space Predictive Models: Conclusion

I We study the relevance of state-space models for
spatiotemporal data, with a focus on:
I stochastic generation for videos;
I variable separation for physical phenomena.

I Such models allow us to simulatenously perform accurate
prediction and learn meaningful representations.

I We show the important role of modeling via dynamical systems
for the performance of these temporal models.

Further Resources: code, models, animated samples
I https://sites.google.com/view/srvp/
I https://github.com/JeremDona/spatiotemporal_variable_separation
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Analyzing of the Training
Dynamics of Generative Models

Franceschi, de Bézenac, Ayed et al. “A Neural Tangent Kernel Perspective of GANs”.
2021. Preprint. Under review.



Outline

Goal
Theoretical analysis of a popular class of generative models, GANs,
to better understand them.

Our approach:

1. problem: flaws of previous analyses;
2. proposed solution: modeling the discriminator’s training

dynamics;
3. results, including:

I generator training dynamics;
I IPMs and NTK MMD;
I architecture comparisons.
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Setting: Generative Adversarial Networks

Principle

I Generator g generating a fake distribution αg that should
imitate a target β.

I Competing with a discriminator f trained to distinguish
between fake and target samples:

inf
g

sup
f
L(f, g).
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The Vanilla and Wasserstein GAN Analyses

I Vanilla GAN (Goodfellow et al., 2014), with F = L2(Ω):

inf
g

sup
f∈F

Ex∼αg

[
log
(

1− σ
(
f(x)

))]
+ Ey∼β

[
log σ

(
f(y)

)]
= inf

g
JS
(
αg, β

)
.

I Wasserstein GAN reasoning (Arjovsky et al., 2017):
I JS

(
αg, β

)
is constant in many cases;

I no gradient-based optimization of g;
I alternative criterion to solve the problem (W1 instead of JS).

Problem
Flawed analysis of GAN practice: vanilla GAN is trainable by
gradient descent.
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First Issue: Min /Max vs. Alternating Optimization

Min /Max: Optimal Discriminator fgθ (Metz et al., 2017)

Ex∼αgθ

[(
a ◦ fgθ

)
(x)
]
− Ey∼β

[(
b ◦ fgθ

)
(y)
]

∇θEx∼αgθ

[(
a ◦ fgθ

)
(x)

]
−∇θEy∼β

[(
b ◦ fgθ

)
(y)

]
.

∇θ

Discriminator and Generator Optimized Independently

Ex∼αgθ
[
(a ◦ f)(x)

]
− Ey∼β

[
(b ◦ f)(y)

]
∇θEx∼αgθ

[(
a ◦ f

)
(x)

]
−∇θEy∼β

[(
b ◦ f

)
(y)

]
.

∇θ

Consequence

Altering the gradient changes the loss C minimized by the generator.
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Alternating Optimization Theory

Question

I Generator gradients correspond to some loss C .
I C is neither the Jensen-Shannon nor W1.
I What is the loss C induced by the discriminator?

Optimization of gθ for a discriminator f via the chain rule:

θi+1 = θi − η∇θi
(
Ex∼αgθi

[
(a ◦ f)(x)

])
.

Consequence

∇f is crucial for generator training and should be taken into account
in a sound theoretical framework.

Representation Learning and Deep Generative Modeling in Dynamical Systems – Jean-Yves Franceschi 34/45



Alternating Optimization Theory

Question

I Generator gradients correspond to some loss C .
I C is neither the Jensen-Shannon nor W1.
I What is the loss C induced by the discriminator?

Optimization of gθ for a discriminator f via the chain rule:

θi+1 = θi − η∇θi
(
Ex∼αgθi

[
(a ◦ f)(x)

])
.

Consequence

∇f is crucial for generator training and should be taken into account
in a sound theoretical framework.

Representation Learning and Deep Generative Modeling in Dynamical Systems – Jean-Yves Franceschi 34/45



Alternating Optimization Theory

Question

I Generator gradients correspond to some loss C .
I C is neither the Jensen-Shannon nor W1.
I What is the loss C induced by the discriminator?

Optimization of gθ for a discriminator f via the chain rule:

θi+1 = θi − η∇θi
(
Ex∼αgθi

[
(a ◦ f)(x)

])
.

Consequence

∇f is crucial for generator training and should be taken into account
in a sound theoretical framework.

Representation Learning and Deep Generative Modeling in Dynamical Systems – Jean-Yves Franceschi 34/45



Second Issue: Ill-Defined Discriminator Gradient

Discriminator Inner-Loop Optimization

Discrete training distribution γ̂ =
α̂g+β̂

2 , with objective:

sup
f∈L2(Ω)

{
Lα̂g(f) , Ex∼α̂g

[
(a ◦ f)(x)

]
− Ey∼β̂

[
(b ◦ f)(y)

]}
.

Problem
Since γ̂ is discrete, ∇f is ill-defined.

Representation Learning and Deep Generative Modeling in Dynamical Systems – Jean-Yves Franceschi 35/45



Second Issue: Ill-Defined Discriminator Gradient

Discriminator Inner-Loop Optimization

Discrete training distribution γ̂ =
α̂g+β̂

2 , with objective:

sup
f∈L2(Ω)

{
Lα̂g(f) , Ex∼α̂g

[
(a ◦ f)(x)

]
− Ey∼β̂

[
(b ◦ f)(y)

]}
.

Problem
Since γ̂ is discrete, ∇f is ill-defined.

Representation Learning and Deep Generative Modeling in Dynamical Systems – Jean-Yves Franceschi 35/45



Solution: Modeling Neural Discriminator Training

I In practice, f = fϑ is a neural network of a given architecture
trained by gradient ascent to maximize Lα̂.

I The training procedure and choice of architecture specify the
values and gradients of the discriminator everywhere.

Modeling Choice

We choose to model this complex parameterization with the powerful
theory of Neural Tangent Kernels (NTKs).
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Outline

Goal
Theoretical analysis of a popular class of generative models, GANs,
to better understand them.

Our approach:

1. problem: flaws of previous analyses;
2. proposed solution: modeling the discriminator’s training

dynamics;
3. results, including:

I generator training dynamics;
I IPMs and NTK MMD;
I architecture comparisons.
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NTK and Discriminator Optimization

Infinite-Width Regime

I Kernel k called the NTK of fϑ (Jacot et al., 2018).
I Used through the integral operator Tk,γ̂ (from kernel theory).

I k is architecture-dependent;
I Tk,γ̂ encapsulates the inductive biases of the discriminator.

Discriminator Inner Loop Training (Continuous-Time)

∂tft =

defined everywhere︷ ︸︸ ︷
Tk,γ̂

(
∇γ̂Lα̂(ft)︸ ︷︷ ︸
defined over γ̂

)
.
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Relevance & Consequences on the Generator Dynamics

The discriminator gradients are well-defined, thereby making this
framework closer to GAN practice.

Theorem
ft is infinitely differentiable (almost) everywhere.

I Evolution of the generator g` in continuous-time, with NTK kg:

∂`g` = −Tkg ,pz

(
z 7→ ∇x

(
a ◦ fα̂g`

)
(x)

∣∣∣∣
x=g`(z)

)
.

I Complex dynamics, cf. Stein gradient flows (Duncan et al.,
2019).

Consequence on C (g`)

C (g`) is non-increasing during training.
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Case Study: IPM loss

I Suppose that:

Lα̂(f) = Ex∼α̂
[
f(x)

]
− Ey∼β̂

[
f(y)

]
, f0 = 0.

I Then:
Lα̂(ft) = t ·MMD2

k

(
α̂, β̂

)
.

Consequences

I C is the squared MMD defined with the NTK of f between
fake and target distributions.

I C depends on the discriminator’s architecture.
I Paves the way for convergence results (Arbel et al., 2019;

Mroueh et al., 2021).

→ Novel results made possible by our NTK framework.
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Experimental Study on GAN Convergence

We simplify the analysis by solving the GAN minimization problem
over a point cloud instead of a neural generator.

Example for the IPM
model:

dx`
d`

= −∇x`

(
fα`
)
.

Background: discriminator.
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Experimental Study on GAN Convergence
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→ Correlation between finite and infinite-width regimes.
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Experimental Study on GAN Convergence
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ReLU

ReLU (no bias)
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Analysis of GANs’ Training Dynamics: Conclusion

I We identify fundamental flaws in previous GAN analyses.
I We propose a novel NTK-based framework solving these issues.
I This framework provides a new understanding of GAN training,

with:
I the generator’s training dynamics;
I the link between IPMs and the NTK MMD;
I the performance of ReLU activations for generative modeling.

I Opens new perpectives for further analyses.

Experimental Framework

Code: https://github.com/emited/gantk2.
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Conclusion & Perspectives



Conclusion

Dynamical Systems and Generative Modeling

We explored two applications:
I for better modeling and representation learning of

spatiotemporal sequences;
I to study the training dynamics of generative models.

I In spatiotemporal modeling, it allowed us:
I to accurately predict videos and physical phenomena;
I to improve our interpretation of state-space models.

I By studying training dynamics, we could overcome the issues of
prior GAN analyses and better understand these models.
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I By studying training dynamics, we could overcome the issues of
prior GAN analyses and better understand these models.
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Perpectives: Spatiotemporal Prediction

I Improve modeling hypotheses:
I merge video and PDE-based models;
I relax the constancy hypothesis of the content variable w;
I introduce adaptive stochasticity (unfinished project):

dy

dt
= fθ

(
y, zbtc+1

)
⇒ dy

dt
= fθ(y, zti), with ti learned.

I Scale models (Villegas, Pathak, et al., 2019).
I Apply models to other types of sequential data.
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Perpectives: Training Dynamics of Generative Models

I Solve open questions:
I find the loss C for other models;
I establish convergence results;
I understand the performance of the ReLU NTKs.

I Leverage our framework to improve GANs:
I find better discriminators;
I develop new models and losses (ongoing work on MMD NTK

GAN).

I Apply this analysis to other generative models (links with
score-based models).
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Thank you for your attention!
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