# Unifying GANs and Score-Based Diffusion as Generative Particle Models

Jean-Yves Franceschi,<sup>1</sup> Mike Gartrell,<sup>1</sup> Ludovic Dos Santos,<sup>1,\*</sup> Thibaut Issenhuth,<sup>1,2,\*</sup> Emmanuel de Bézenac,<sup>3,\*</sup> Mickaël Chen,<sup>4,\*</sup> Alain Rakotomamonjy<sup>1,\*</sup> <sup>1</sup>Criteo Al Lab, Paris, France <sup>2</sup>LIGM, Ecole des Ponts, Univ Gustave Eiffel, CNRS, Marne-la-Vallée, France <sup>3</sup>SAM, D-MATH, ETH Zürich, Zürich-8092, Switzerland <sup>4</sup>Valeo.ai, Paris, France

## **Our Contributions**

- We unify gradient flows, score-based diffusion models, and GANs by representing generated data as moving particles.
- A model is defined by:
  - a gradient vector field that the particles follow;
- the possibility of incorporating a generator smooting this movement.
- This suggests the existence of hybrid models:
  - a generator trained with diffusion guidance (Score GANs);
- a GAN trained without a generator (Discriminator Flows).

#### **GANs vs Diffusion**

Traditional opposition in the literature.

- **GANs**  $\rightarrow$  Generator trained by discriminating true vs fake data.
- Generator (manifold learning / hypothesis).
- Close to SOTA performance.
- Harder to optimize.
- Fast inference.

#### **Diffusion** $\rightarrow$ Learns to progressively reverse a data degradation process.

CRITEC

Al Lab

- No generator (operates on the data space).
  - SOTA performance.
  - Easier to optimize.
  - Slow inference.



ETHzürich

Université Gustave Eiffel

#### Wasserstein Gradient **Particle-Based Framework** Log Ratio Gradient **Discriminator Gradient** $-\nabla(c\circ f_{\rho_t})$ Generated particles $x_t \sim \rho_t$ follow a gradient vector $-\nabla_W \mathcal{F}(\rho_t) = -\nabla \frac{\partial \mathcal{F}(\rho_t)}{\partial c}$ $\alpha_t \nabla \log \left| p_{\text{data}} \star k_{\text{RBF}}^{\sigma(t)} \right| - \beta_t \nabla \log \rho_t$ field $\nabla h_{\rho_t}$ , i.e. optimize an objective $h_{\rho_t}$ . where $f_{\rho_t}$ discriminates $\rho_t$ from $p_{\text{data}}$



#### Score GANs in Practice

#### **Discriminator Flows in Practice**

#### **Smoothing Operator**

•  $\mathcal{A}_{\theta_t}(z)$  is a linear operator on vector fields (kernel integral operator):

 $\left[\mathcal{A}_{\theta_t}(z)\right](V) \triangleq \mathbb{E}_{z' \sim p_z} \left[k_{g_{\theta_t}}(z, z') V\left(g_{\theta_t}(z')\right)\right],$  $k_{q_{\theta_t}}(z, z') \triangleq \nabla_{\theta_t} g_{\theta_t}(z')^\top \nabla_{\theta_t} g_{\theta_t}(z).$ 

- $k_{g_{\theta_t}}$  is the generator's Neural Tangent Kernel (NTK, Jacot et al., 2018).
- Special case:  $k_{g_{\theta_t}}(z, z') = \delta_{z-z'}I_d$  (generator with infinite capacity).
- No interaction between particles:  $[\mathcal{A}_{\theta_t}(z)](V) = V(g_{\theta}(z)).$ •  $dg_{\theta_t}(z) = \nabla h_{\rho_t}(g_{\theta_t}(z)) dt$ : we retrieve PMs.
- General case:  $\mathcal{A}_{\theta_t}$  represents the parameterization of  $\rho$  as a manifold.
- $\mathcal{A}_{\theta_t}$  smooths the original vector field  $\nabla h_{\rho_t}$  by convolving it with k.
- Particles interact with each other through generator parameterization.

### From PMs to Int-PMs

• We assign to each generated particle  $x = g_{\theta}(z)$  the same loss as in PMs:

 $\mathcal{L}_{\text{gen}}(\theta) = -\mathbb{E}_{z \sim p_z} \Big[ h_{\rho_t} \big( g_{\theta}(z) \big) \Big].$ 

- We do not take into account the dependency of  $\rho_t$  w.r.t.  $\theta_t$ , to mimic PMs:  $\rho = \text{StopGradient}(g_{\theta} \sharp p_z).$
- Continuous-time gradient descent:

$$\frac{\mathrm{d}\theta_t}{\mathrm{d}t} = -\eta \nabla_{\theta_t} \mathcal{L}_{\mathrm{gen}}(\theta_t) = \eta \nabla_{\theta_t} \mathbb{E}_{z \sim p_z} \Big[ h_{\rho_t} \big( g_{\theta_t}(z) \big) \Big]$$
$$= \eta \mathbb{E}_{z \sim p_z} \Big[ \nabla_{\theta_t} g_{\theta_t}(z) \nabla h_{\rho_t} \big( g_{\theta_t}(z) \big) \Big].$$

- Two practical issues:
- sliced score matching to train  $s^{\rho}_{\phi}$ ;
- scheduling  $\sigma$ s w.r.t. training time t.
- We randomly sample  $\sigma$  and also noise the particles:
  - $\nabla h_{\rho} = \nabla \log[p_{\text{data}} \star k_{\text{RBF}}^{\sigma}] \nabla \log[\rho_t \star k_{\text{RBF}}^{\sigma}],$  $\equiv \nabla h_{\rho}(\cdot, \sigma) = s_{\gamma}^{p_{\text{data}}}(\cdot, \sigma) - s_{\phi}^{\rho}(\cdot, \sigma).$
- Generator update:
- few-step training of  $s^{\rho}_{\phi}$  with denoising score matching;
- gradient descent step:

$$\theta \leftarrow \theta + \eta \mathop{\mathbb{E}}_{\sigma \sim p_{\sigma}, \varepsilon \sim \mathcal{N}(0, \sigma I_D), z \sim p_z} \Big[ \nabla_{\theta} g_{\theta}(z) \widetilde{\nabla h}_{\rho} \big( g_{\theta}(z) + \varepsilon, \sigma \big) \Big]$$

• Discriminator loss:

 $\mathcal{L}_{d}(f;\rho,p_{data}) = \mathbb{E}_{\rho}[a \circ f] - \mathbb{E}_{p_{data}}[b \circ f] + \mathcal{R}(f;\rho,p_{data}).$ 

- Naive training: successive  $f_{\rho_t}$  trainings and  $\rho_t$  updates.
- For efficiency purposes, we simultaneously learn all timeparameterized discriminators:  $f_{\rho_t} = f_{\phi}(\cdot, t)$ .
- Training step:
  - sample  $t \sim \mathcal{U}([0,1])$ ,  $x_0 \sim \pi$ ;
- compute  $x_t = -\eta \int_0^t \nabla (c \circ f_\phi(\cdot, s))(x_s) ds$ ;
- train  $f_{\phi}(\cdot, t)$  to discriminate between  $x_t$  and  $p_{\text{data}}$ .
- Generalization of some gradient flows.

#### **Experimental Results**

| Dataset | PMs (r | no generator) | Int-PMs (generator) |           |  |  |
|---------|--------|---------------|---------------------|-----------|--|--|
|         | EDM    | Discr. Flow   | GAN                 | Score GAN |  |  |
| MNIST   | 3      | 4             | 3                   | 15        |  |  |
| CelebA  | 10     | 41            | 19                  | 35        |  |  |

• Hybrid models are viable, and support the theory. EDM: diffusion (Karras et al., 2022).

| FDM            | 7 | Ś | 5 | 7 | 8 | 7 | 0 |  |
|----------------|---|---|---|---|---|---|---|--|
| GAN<br>GAN     | 2 | 0 | 4 | 1 | 4 | Ĵ | 0 |  |
| GAN<br>1       | 2 | ) | 2 | ¥ | Z | 6 | 5 |  |
| Discr.<br>Flow | d | 9 | 3 | 9 | ٥ | 6 | 5 |  |

#### **Properties**

$$\frac{\mathrm{d}g_{\theta_t}(z)}{\mathrm{d}t} = \nabla_{\theta_t} g_{\theta_t}(z)^\top \frac{\mathrm{d}\theta_t}{\mathrm{d}t} = \eta \mathbb{E}_{z' \sim p_z} \bigg[ \nabla_{\theta_t} g_{\theta_t}(z)^\top \nabla_{\theta_t} g_{\theta_t}(z') \nabla h_{\rho_t} \Big( g_{\theta_t}(z') \Big) \bigg].$$

**Other Models & Flows** 

- Int-PMs and Stein (generalization of Durr et al. (2022)):  $k(g_{\theta_t}(z), g_{\theta_t}(z')) = k(g_{\theta_t}(z), g_{\theta_t}(z'))$  $k_{g_{\theta_t}}(z, z')$  in the NTK regime.
- Langevin diffusion (Song et al., 2019) is a KL flow.
- Under some hypotheses, GANs are Stein flows (Franceschi et al., 2022; Yi et al., 2023): KL flow for f-divergence GANs, squared MMD for IPM GANs.
- As a consequence, under similar hypotheses, Discriminator Flows with the same losses are Wasserstein flows.
- Many methods use neural networks to approximate the flow (Alvarez-Melis et al., 2022; Heng et al., 2023).



• **Discriminator flows** learn a path to the data distribution, unlike **diffusion**.

| 5 | G | 9 | લ | 4 | 4   | 4 | 9 | 9 | 7 |
|---|---|---|---|---|-----|---|---|---|---|
| 5 | 9 | 9 | 7 | 7 | 7   | 1 | 1 | 7 | 2 |
| 4 | 4 | / | 8 | S | 8   | 8 | 3 | 3 | 3 |
| 5 | 5 | 5 | 5 | ሯ | ŁĮ. | 4 | 4 | 4 | 0 |

| k | ķ | Q | ۵ | ٥ | 0 | 0 | 0  | 0  | 0   |
|---|---|---|---|---|---|---|----|----|-----|
| ١ | ٩ | 4 | 4 | 4 | Ц | Ц | U  | Ŀ, | Ċ\$ |
| 1 | 1 | 1 | 1 | 7 | 7 | 7 | ?  | ?  | ?   |
| 9 | 9 | 9 | 9 | 9 | 9 | 9 | 17 | ť) | υ   |

• **PMs vs Int-PMs**: Int-PMs are prone to mode collapse but are faster than PMs at inference and have better latent space properties.

#### Perspectives

- Our work paves the way for new hybrid models.
- Model improvements: Score GANs for score distillation, Discriminator Flows for generation efficiency.
- Framework improvements: convergence guarantees, second-order and discrete-time optimization, more accurate GAN modeling.

