
Unifying GANs and Score-Based Diffusion
as Generative Particle Models
Jean-Yves Franceschi,1 Mike Gartrell,1 Ludovic Dos Santos,1,∗ Thibaut Issenhuth,1,2,∗ Emmanuel de Bézenac,3,∗ Mickaël Chen,4,∗ Alain Rakotomamonjy1,∗

1Criteo AI Lab, Paris, France 2LIGM, Ecole des Ponts, Univ Gustave Eiffel, CNRS, Marne-la-Vallée, France 3SAM, D-MATH, ETH Zürich, Zürich-8092, Switzerland 4Valeo.ai, Paris, France

Our Contributions

• We unify gradient flows, score-based diffusion models, and GANs by
representing generated data as moving particles.
• A model is defined by:
• a gradient vector field that the particles follow;
• the possibility of incorporating a generator smoothing this movement.
• This suggests the existence of hybrid models:
• a generator trained with diffusion guidance (Score GANs);
• a GAN trained without a generator (Discriminator Flows).

GANs vs Diffusion
Traditional opposition in the literature.

GANs → Generator trained
by discriminating true vs fake
data.
• Generator (manifold learn-

ing / hypothesis).
• Close to SOTA performance.
• Harder to optimize.
• Fast inference.

Diffusion → Learns to pro-
gressively reverse a data degra-
dation process.
• No generator (operates on

the data space).
• SOTA performance.
• Easier to optimize.
• Slow inference.

Links

Article Code and samples

Particle-Based Framework

Generated particles xt ∼ ρt follow a gradient vector
field ∇hρt, i.e. optimize an objective hρt.

Wasserstein Gradient

−∇WF(ρt) = −∇ ∂F(ρt)
∂ρt

Log Ratio Gradient

αt∇ log
[
pdata ⋆ k

σ(t)
RBF

]
− βt∇ log ρt

Discriminator Gradient

−∇
(
c ◦ fρt

)
where fρt discriminates ρt from pdata

Particle Models (No Generator)
• At generation / inference time t:

x0 ∼ π = ρ0, dxt = ∇hρt(xt) dt.
• Independently moving particles.
• Each xt individually follows a gradi-

ent ascent path on hρt(xt).
• hρ is usually a predefined functional

approximated with neural networks.

Wasserstein Gradient Flows
• Gradient descent for functionals over distri-

butions F (Santambrogio, 2017).

Score-Based Diffusion

• Using Jordan et al. (1998) in Song et al.
(2019) and Karras et al. (2022):

dxt = αt∇ log
[
pdata ⋆ k

σ(t)
RBF

]
(xt) dt

+
√

2βt dWt ⇔ −βt∇ log ρt dt.

Discriminator Flows

• Particles directly follow the discriminator gra-
dient.
• The discriminator is simultaneously trained

and used to generate data.

Interacting Particle Models (Generator)

• Training with the same loss:

Lgen(θ) = −Ez∼pz
[
hρt

(
gθ(z)

)]
.

• At training time t:
dgθt(z) = η

[
Aθt(z)

](
∇hρt

)
dt.

• Generalization of PMs where parti-
cles interact with each other.

Stein Gradient Flows

• Stein gradient flows (Liu, 2017) are kernel-
ized Wasserstein gradient flows:

dxt = Ex′t∼ρt
[
k
(
xt, x

′
t

)
∇hρt

(
x′t
)]

dt.

• Int-PMs under mild hypotheses (generaliza-
tion of Durr et al. (2022)).
• Hint towards the same hρ being used in a

PM and an Int-PM.

Score GANs

• Estimate ∇hρ with two score matching net-
works and use it in parameter update equa-
tion of generator training.
• Data score (pretrained like diffusion):
spdata
ψ (·, σ) ≡ ∇ log

[
pdata ⋆ k

σ
RBF

]
.

• Generated distribution score (continuously
updated like a discriminator): sρϕ ≡ ∇ log ρ.
• ∇̃hρ(x, σ) = spdata

ψ (x, σ)− sρϕ(x).

GANs

• Gradient descent-ascent on the min-max ob-
jective yields the generator loss:

LGAN(gθ) = Ez∼pz
[(
c ◦ fρ

)(
gθ(z)

)]
.

Smoothing Operator

• Aθt(z) is a linear operator on vector fields (kernel integral operator):[
Aθt(z)

]
(V ) ≜ Ez′∼pz

[
kgθt

(
z, z′

)
V
(
gθt

(
z′
))]

,

kgθt
(
z, z′

)
≜ ∇θtgθt

(
z′
)⊤∇θtgθt(z).

• kgθt is the generator’s Neural Tangent Kernel (NTK, Jacot et al., 2018).
• Special case: kgθt

(
z, z′

)
= δz−z′Id (generator with infinite capacity).

• No interaction between particles:
[
Aθt(z)

]
(V ) = V

(
gθ(z)

)
.

• dgθt(z) = ∇hρt
(
gθt(z)

)
dt: we retrieve PMs.

• General case: Aθt represents the parameterization of ρ as a manifold.
• Aθt smooths the original vector field ∇hρt by convolving it with k.
• Particles interact with each other through generator parameterization.

From PMs to Int-PMs

• We assign to each generated particle x = gθ(z) the same loss as in PMs:

Lgen(θ) = −Ez∼pz
[
hρt

(
gθ(z)

)]
.

• We do not take into account the dependency of ρt w.r.t. θt, to mimic PMs:
ρ = StopGradient(gθ♯pz).
• Continuous-time gradient descent:

dθt
dt

= −η∇θtLgen(θt) = η∇θtEz∼pz
[
hρt

(
gθt(z)

)]
= ηEz∼pz

[
∇θtgθt(z)∇hρt

(
gθt(z)

)]
.

• Evolution of particles:
dgθt(z)

dt
= ∇θtgθt(z)

⊤ dθt
dt

= ηEz′∼pz
[
∇θtgθt(z)

⊤∇θtgθt
(
z′
)
∇hρt

(
gθt

(
z′
))]

.

Other Models & Flows

• Int-PMs and Stein (generalization of Durr et al. (2022)): k
(
gθt(z), gθt

(
z′
))

=
kgθt

(
z, z′

)
in the NTK regime.

• Langevin diffusion (Song et al., 2019) is a KL flow.
• Under some hypotheses, GANs are Stein flows (Franceschi et al., 2022; Yi et al.,

2023): KL flow for f -divergence GANs, squared MMD for IPM GANs.
• As a consequence, under similar hypotheses, Discriminator Flows with the same

losses are Wasserstein flows.
• Many methods use neural networks to approximate the flow (Alvarez-Melis

et al., 2022; Heng et al., 2023).

Score GANs in Practice

• Two practical issues:
• sliced score matching to train sρϕ;
• scheduling σs w.r.t. training time t.
• We randomly sample σ and also noise the particles:

∇hρ = ∇ log[pdata ⋆ k
σ
RBF]−∇ log[ρt ⋆ kσRBF],

≡ ∇̃hρ(·, σ) = spdata
ψ (·, σ)− sρϕ(·, σ).

• Generator update:
• few-step training of sρϕ with denoising score matching;
• gradient descent step:

θ ← θ+η E
σ∼pσ,ε∼N (0,σID),z∼pz

[
∇θgθ(z)∇̃hρ

(
gθ(z) + ε, σ

)]
.

Discriminator Flows in Practice

• Discriminator loss:
Ld(f ; ρ, pdata) = Eρ[a ◦ f ]−Epdata[b ◦ f ]+R(f ; ρ, pdata).
• Naive training: successive fρt trainings and ρt updates.
• For efficiency purposes, we simultaneously learn all time-

parameterized discriminators: fρt = fϕ(·, t).
• Training step:
• sample t ∼ U

(
[0, 1]

)
, x0 ∼ π;

• compute xt = −η
∫ t

0 ∇
(
c ◦ fϕ(·, s)

)
(xs) ds;

• train fϕ(·, t) to discriminate between xt and pdata.
• Generalization of some gradient flows.

Experimental Results

• Hybrid models are viable, and sup-
port the theory.
EDM: diffusion (Karras et al., 2022).

Properties

• Discriminator flows learn a path to the
data distribution, unlike diffusion.

• PMs vs Int-PMs: Int-PMs are prone to mode collapse but are faster than PMs
at inference and have better latent space properties.

Perspectives

• Our work paves the way for new hybrid models.
• Model improvements: Score GANs for score distillation, Discriminator Flows for generation efficiency.
• Framework improvements: convergence guarantees, second-order and discrete-time optimization, more accurate GAN

modeling.

NeurIPS@Paris 2023, Paris, France


